OQM

R sy

//

Deploying Expert Systems in Ada

¢
0
0 @
~ n o o
i L g
D
(SIS o
o cC o
< D20 .
-
0
~N
[ah]
(&)
m
>
=) _
X
w -
-
& 17
> 8)
[Ze 2 o] ==
Q@
-
x C
w v
a >
x O
W o
(LI _
P o]
—
>
C e
-l 2
a v 3 -
W € o T
TS e =
L~
[BETY)
(oS B¢ + B
o~ Q@ "
D N -
QY
~ oW
|~
[« 4 -
[®] Q _
I T
<T 23
g Qo
< E
FZ0
~)

S. Daniel Lee
Bradley P. Allen

~Inference Corporation

October 1989

Cooperative Agreement NCC 9-16
Research Activity No. SE.19

NASA Johnson Space Center
Information Systems Directorate
~ Information Technology Division

5 6

v —
Research Institute for Computing and Information Systems
University of Houston - Clear Lake .

-

//5; /- ("/2/

\OM

T-E-C-H-N-1I-C-A-L R-E-P-O-R-T

The
"RICIS
Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space

Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnershxp withJSCto Jomtly define and manage an mlegrated program of research
in advanced data procasmg technology needed for JSC’s main missions, including

__administrative, engineering and science responsibilities. JSC agreed and entered info

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986,10

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared

by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate rmrch on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the “gateway” concept. UH-Clear

Lake establishes relatxonéTnps with other universities and research orgamzanons T

having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results

into the cooperative goals of UH-Clear Lake and NASA/JSC,

mm“””“ I m J‘w KL '

KL .

il

il

i

" er-)

il

i 1

o
(il 4

.

il

ey w‘} .
o

i

o1 0

ML

i

Ll

i |

LR

W
|

| f I 1

Lre 1ol

Deploying Expert Systems in Ada

£ L1 -

{1

Preface

This research was conducted under auspices of the Research Institute for
Computing and Information Systems by Inference Corporation. Dr. Charles McKay
served as RICIS research coordinator.

Funding has been provided by the Information Systems Directorate, NASA/JSC
through Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and
the University of Houston-Clear Lake. The NASA technical monitor for this activity was
Robert T. Savely, of the Software Technology Branch, Information Technology Division,
Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and
should not be interpreted as representative of the official policies, either express or
implied, of NASA or the United States Government.

N ([.

L T IS b

L L W] S 1] Bl BT B

11

LRI

D

Deploying Expert Systems in Ada’

S Daniel Lee and Bradley P. Allen”

\
N . !_. %
Inference Corporation i\ \;-\
5300 W. Century Blvd. ‘

do X

Los Angeles, CA 90045 v

Abstract

As the Department ol Defense Ada mandate begins to
be enforced actively. interest in deploying expert
systems in Ada has increased. This paper introduces
a prototype Ada-based expert system tool called
ART/Ada. This prototype was built to support
research into the language and operational issues of
expert systems in Ada. ART, Ada allows applications
of a conventional expert system tool called ART-IM
{Automated Reasoning Tool for Information
Management) to be deployed in various Ada
environments with efficient use of time and space.
ART-IM, a C-based expert svstem tool, is used to
generate Ada source code which is compiled and
linked with an Ada-based inference engine to produce
an Ada executable image. The future research
directions call for improved support for real-time
embedded and distributed expert systems. ART/Ada
will be used to implement several prototype expert
systems for the Space Station Freedom Program
testbeds.

1. Introduction

1.1. Motivation

As the Department of Delense mandate to
standardize on Ada as the language for embedded
software systems development begins to be actively
enforced. interest from developers of large-scale Ada

systems in making expert systems technology readily
available in Ada environments has increased.

Two examples of Ada applications that can benefit
from the use of expert systems are monitoring and
control syvstems and decision support systems.
Monitoring and control systems demand real-time
performance, small execution images, tight integration
with other applications, and predictable demands on
processor resources; decision support systems have
somewhat less stringent requirements. An evample
project that exhibits the need for both of these types
of systems is NASA’s Space Station Freedom.
Monitoring and control systems that will perform
fault detection, 1solation and reconfiguration for
various on-board systems are expected to be developed
and deployed on the station either in its initial
operating confliguration or as the station evolves;
decision support systems that will provide assistance
in activities such as crew-time scheduling and failure
mode analysis are also under consideration. These
systems will be expected to run reliably on a standard
data processor, currentfy visioned to be a [-16
megabyte 80386-based workstation. The Station 1s
typical of the large Ada software development
projects that will require expert systems in the 1990's.

Another large-scale application that can he benefited
from the Ada-based expert system tool technology is
the Pilot’s Associate (PA} expert system project for
military combat aircralt [9]. Funded by the Defense
Advanced Research Projects Agency (DARPA) as part
of its Strategic Computing Program, the PA project
attempts to automate the cockpit of mihitary combat
aircraft using Artificial Intelligence (Al) techniques.
A Lisp-based expert system tool, ART {(Automated
Reasoning Tool), was used to implement the Phase |

*
This paper will he published in the proceedings of the TRI-Ada "83 Conference to be held during October 22-26, 1U84 in Pittshurgh, PA.

prototvpe. An Ada-based expert system tool can
provide a migration path to deploy the prototype on
an on-board computer because Ada cross-compilers
are readily available 1o run Ada programs on most
embedded processors used for avionies.

1.2. Approach

Inference Corporation developed an expert system
tool called ART [Automated Reasoning Tool) that has
been commercially available for several years [11].
ART is written in Commeon Lisp and it supports
various reasoning facilities such as rules, objects,
truth maintenance. hyvpothetical reasoning and object-

oriented programming. Last vear, Inference’

introduced another expert system tool called ART-IM
(Automated Rensoning Tool for Information
Management), which is also commercially
available 112}, ART-IM is written in C and it
supports a major subset of ART’s reasoning facilities
including rules, objects, truth. maintenance and
object-oriented programming. Both ART and ART-
M have been successfully used to develop many
applications which are n daily use
today {5, {16]. [17].

Our approach in designing a prototype Ada'—brai'sred

expert system tool was to use the architecture of
proven expert system tools: ART and ART-IM. ART-

M was selected as a baseline system because C is

much closer to Ada. While ART-IM’s inference -

engine was reimplemented in Ada, ART-IM’s front-
end (its parser/analyzer and user interface) was not.
Instead. ART-IM was enhanced to generate Ada
source code that would be used to initialize Ada data
structures equivalent to ART-INM’s internal C data
structures. This approach allows the user to take full
advantage of . ART-IM’s interactive development
environment while developing an application; once the
development is complete, the application is converted
to Ada source code that is compiled and linked with
the Ada runtime kernel. '

1.3. The ART-IM Ex'pérrt System Tool

ART-IM is a general purpose expert system tool
written in C. It consists of

e a runtime Kernel,

o o C deployment compiler. and
e an interactive development environment.

ART-TM's kernel supports the following features:

e a forward-chaining rule system based on
the Rete algorithm (6!

e an object system,
s object-oriented programming.

e a justification-based truth maintenance

system(JTMS), and
e explanation generation utilities,

ART-IM supports deplovment of applications in C
using a C deployment compiler that converts an
application into C data structure definitions in the
form of either C source code or object code.

ART-IM’s interactive development environment
includes a highly functional user interface that allows

browsing and debugging of the knowledge hase and an’

integrated editor that allows incremental compilation.

ART-IM is available for VMS, MVS and MS-DOS
environments.

"2, ART/Ada: An Ada-based

Expert System Tool

2.1. Ada Runtime Kernel

The ART/Ada runtime kernel is composed ol the
following components:

e an inference engine,
¢ a procedural interface package,
¢ 2 memory management package. and

e Ada deployment compiler utilities.

ART/Ada’s inference
implementation of ART-IN's inference engine and is

engine is an Ada

t

functionally identical to ART-IMs.

ART Ada’s procedural interface includes all public
functions in ART-IN except for those that are used
only during the development phase and those that are
part of ART-INs user interface toolkit. ART, Ada’s
procedural interlace can be used either in the right-
hand =ide of a rule. or directly 1n user’s Ada
programs. The procedural interface includes data
type conversions between the Ada data types and the
ART-IM data types, predicates, operations on ART-
IM objects, ART-IM commands, 1'O Tunctions and
math functions.

ART/Ada’s memory management package uses the
Ada features new and unchecked deallocation to
allocate and deallocate memory.

The ART/Ada runtime kernel contains utilities
called by the Ada code generated by the Ada
deployment compiler.

2.2. Ada Deployment Compiler

ART-IM was augmented with an Ada deployment
compiler to support ART/Ada. As shown in figure
2-1, 1ts input s an ART-IM source file, and its output
is Ada source files. At any point after an ART-IM
source file is loaded into ART-IM, and the knowledge
base 1s initialized for execution, the Ada deployment
compiler may be invoked to generate the Ada source
code that would initialize the internal data structures
of ART/Ada. An Ada package specification
generated by ART-IM for an example application
called MY __EXPERT _SYSTEM is as follows:

-- generated automatically by ART-IM
package MY _EXPERT_SYSTEM is

-- initialize the application.
procedure INIT;

end MY EXPERT_SYSTEM;

An Ada main program that the user would write to
initialize and run the application would look hike this:

-- This is a main program written by the user
-- ART is a public package of ART/Ada

with ART, MY_EXPERT_SYSTEM.

procedure MAIN is

begin
MY_EXPERT_SYSTEM.INIT; -- jinitialize it
ART.RUNC(-1); -- run it

end MAIN;

In addition to generating Ada source code that
represents the knowledge base, the Ada deplovment
compiler also generates a call-out interface module
that is used to call Ada subprograms from ART. Ada.
ART-IM provides a language to specify the call-out
interface for calling Ada subprograms from ART-IM
or ART,/Ada. The Ada deployment compiler is
written in C and is hinked with ART-IM.

2.3. Ada Call-in and Call-out

[t is common that an expert system application calls
out to a procedural language such as Ada from an
expert, system shell. Since ART-IM is used to develop
an ART/Ada application, it is critical to allow the
user to call out to Ada from ART-IM.

An expert system application often calls public
functions of an expert system tool from a procedural
language (e.g. Ada). Since ART-IM is written in C,
each public function must be provided with an Ada
binding to be called from Ada.

A consistent Ada call-in and call-out interface is
provided for both development and deployment
environments so that the user-written Ada code runs
without modification when it is deployved in Ada after
being developed in ART-IM. The ART-IM Ada
binding consists of Ada functions that call ART-IM’s
public lunctions written in C. The specification of
public Tunctions in both the ART-IM Ada binding and
the ART/Ada runtime kernel is identical.

Not all Ada compilers support the feature of calling
Ada from C. On VAX,;VMS, the DEC Ada compiler
can be used because both DEC C and DEC Ada
compilers confirm to the VMS calling standard. On
Unix platforms, the Verdix Ada compiler can be used
because it supports this feature well: it is already
being used as an in-house development tool for the
ART/Ada project; and it is used by many Ada
programmers on Unix platforms. This restriction
exists only on an ART-IM development platform and

does not prevent the users from porting generaled
Ada code and the ART/Ada runtime kernel to other
Ada compilers and hardware platforms. In fact,
ART "Ada has heen already ported to muluple Ada
compilers including DEC, Alsys and Verdix and
multiple hardware platforms such as a VAN/VAIS, o
Sun and an IBM PS2

Ada data types supported for the call-in and call-out
interfaces are: 32 bit integer (INTEGER _TYPE), 61
hit float (FLOAT _TYPE), boolean
(ROOLEAN _TYPE), string (STRING). and an
abstract data type for objects in ART-IM
(ART _OBIECT). Table 2-1 summarizes the
mapping between ART-IM, C and Ada data types.

ART-IM C Ada

integer long INTEGER _TYPE
lloat double |FLOAT_TYPE
boolean | long BOOLEAN _TYPE
string char * | STRING

symbol char * | STRING

art-object | struct * | ART _ OBJECT

Table 2-1: Data Types for Ada Call-in/Call-out

For example. in order to call out to an Ada

function. CALC _AVG, using an ART-IM {unction,
- . . = st

caleulate-average. define the following in ART-IM :

:;, define a function, calculate-average.

(def-user-fun calculate-average
.. Ada name .-
‘epname "CALC_AVG®
;. argument types
‘args ((numi :float)
(num2 :float)
(num3 :float))
, return type
‘returns float
.; Ada compiler
ccompiler :dec-ada)

A specification of an Ada package called USER
should be also defined as follows: -

*
The syntax of ART-IM's procedural lunguage is similar Lo
Common Lisp. R c

-- ART is a public package of ART/Ada
with ART.

use ART;

-- USER 1s a package for user’'s Ada code
package USER is

-- Ada function is called, CALC_AVG
function CALC _AVG(NUM1 - FLOAT_TYPE.
NUM2 . FLOAT_TYPE,
NUM3 : FLOAT TYPE)

revurn FLOAT_TYPE; N

end USER:

This Ada function, CALC _AVG, can be called
from ART-IM as fotfows:

.. call an Ada function, CALC AVG,
;. to calculate an average.

(calculate-average 50.0 45.0 55.0)

which would return 50.0.

2.4. Deployment in Ada

The methodology Tfor developing an ART,/Ada
application defines three distinct platforms, some or
all of which may be the same:

s an ART-IM development platform with
Ada call<in and call-out capability on
which an application is actually developed
and debugged;

¢ an Ada compiler platform on which either
a self-target compiler or a cross-compiler is
used to compile Ada source code; and

o a target platform on which an Ada
excecutable image will be deploved.

The development phase would involve the
development of an ART-IM program with Ada code
that interfaces with ART-IM through an Ada call-in
and call-out interface, which occurs on the ART-IM
development platform.

1]

{1

{l

i

i { i

i

ARTAM

File

ART-IM
File

ART-IM
Code
_— Lexer Generator
L A
Parser Dats
Structures
¥
. ade
loyment
3
<>
Figure 2-1: Ada Deployment Compiler
ARTIM Genersted
with Ada Ada
Deployment Code
Compiler

Figure 2-2:

Ada Deployment Process

b

The deplovment phase would involve compilation of

\da code generated by the ART-IN Ada deployment
compiler and Ada code written by the user, which
occurs on the platform where the Ada compiler runs,
The ART . Ada runtime kernel is provided either in an
Ada source code form or as an Ada library that s
created using the same Ada compiler. If the Ada
compiler is a sell-target compiler, the Ada executable
image will be deploved on the same platform where
the Ada compiler runs. If it 15 a cross-compiler, it
will be deployed on the target platform (which may
be an on-board computer).

As shown in Figure 2-2, the following steps are
needed to deploy an ART-IM application in Ada:

1. Develop and debug an application using
ART-IM= interactive development
environment. I necessary, call out to Ada
from ART-IM using the standard call-out
interface, or call into ART-IM from Ada
using the Ada binding.

2. Generate the Ada code from ART-IM
using the Ada deployment compiler. This
Ada code is portable to any self-host or
cross-compiling Ada compilers. If the Ada
compiler platform 1is different from the
ART-IM development platform, the
generated Ada code can be moved to the
platforin on which the Ada compiler runs.

3. Compile the generated Ada code and the
user-written Ada code using either a self-
target compiler or a cross-compiler into an
appropriate Ada library of the ART/Ada
runtime kernel.

. Create an Ada executable image by linking
an Ada main program.

Nhj

. Deploy the Ada executable image on a
host computer or on a target system,

3. Discussion

3.1. Performance

The ART. Ada project succeeded in proving that
applications of a conventional expert syvstem tool

o

could be deploved in various Ada environments with
cfficient use of time und space. The preliminary
benehmark result of the ART ‘Ada prototvpe shows
that the speed and the size of ART . Ada prototype is
comparable to other tools including C-based tools.
although it 1s somewhat slower and larger than ART-

M

The address space limitation of current generation
embedded processors, such as the MIL-STD-17504, 15
1 megaword (2 megabytes), within which all software
systems including the operating svstem have to run.
This might be too restrictive for large expert system
applications. New generation embedded processors
such as the 80386 would be more than adequate for
expert systems developed using ART, Ada.

While Ada compilers are improving. they still have
not reached the maturity of C compilers. It has also
been observed that both the speed and the size of
ART 'Ada varies up to 30% depending on which Ada
compiler is used. A recent paper discusses the key
technical issues involved in producing high-quality
Ada compilers [7]. As Ada compiler technology
advances. ART/Ada’s performance will improve; we
expect to narrow the performance gap between ART-
M and ART/Ada.

3.2. Ada Limitations

During the reimplementation of the ART-IM
runtime kernel in Ada, several issues concerning the
limitation of Ada language arose.

In order to achieve maximum time and space
efficicncy. ART-IM has been optimized in ways that
are nol portable to Ada. For example. the type cast
feature of the C language has been used both to
optimize data structure and to implement an internal
memory manager. ART-IM's memory manager
maintains its own free list and handles all allocation
and deallocation requests from the ART-IM kernel; 1t
allocates large blocks of memory from the system, and
then fulfills individual {relatively small) requests for
storage {rom the large blocks. As storage is released.
it 1s added to an internally maintained free hst: the
blocks themselves are never released back o the
system. There are several advantages to this
approach: the free space is managed in a common
pool by a single facility and is available for allocation

av

{

{l 1

0

{

of arbitrary data types by using the tyvpe cast
capability i C: and it 15 [aster than using system
routines for small requests. The success of ART-IM's
use of tvpe casting relies on other features of the C
language definition: there is a direct correspondence
between addresses and pointer types;, the mapping
between data tyvpes, mcluding structures and arrays,
s well defined and ~stratghtforward.

Ada does provide a lacility for converting between
data types. although this feature has intentionally
been made difficult to use. In order to convert [rom
one data type to another, the generic [unction
unchecked _conversion must be instantiated for each
conversion required. The existence of a type cast
capabithty n Ada is insufficient to implement the
ART-IM features described above. however. No
correspondence is guaranteed Detween the type
SYSTENL.ADDRESS and Ada access types. Indeed,
underlying
representation s diflerent for addresses and access
types. The constraint checking requirements of Ada
require that the representation of many objects
include descriptor information. The format of these
descriptors is not defined by the language. Hence, it
is impossible to implement the ART-IM style memory
manager in Ada using unchecked _conversion.
Compared to ART-IM, this has resulted in some loss
ol effictency 1n ART/Ada that allocates and
deallocates memory for each data type directly from
or to the Ada runtime system using Ada features, new
and unchecked _ deallocation.

on some implementations the

We also discovered other limitations in Ada that do
not exist 1n C:

¢ ART-IM has an interpreter (similar to a
Lisp interpreter) that calls a C function
using a € function pointer. To emulate
ART-IM's Tunction call mechanism the
Ada deployment compiler automatically
generates Ada source code for a procedure
called FUNCALL that has a large case
statement. This case statement contains
all the Ada subprograms that are called
from an ART Ada application. Each
subprogram 1= assigned with an D
number. To call an Ada subprogram, the
procedure FUNCALL is called with a
subprogram ID number. While 1t may
cause maintenance problems. the use of
function pointers can provide better

performance than the use of the \da case
statement.

Bit operations (¢.g. bitwise exclusive OR,
bitwise shift operations, cte.} that may he
used to implement efficient hashing
algorithms are not provided in Ada. They
may be implemented in Ada but only with
poor performance.

Because a math hibrary, which 15 part of
the standard C language. is not part of the
standard Ada, 1t 1s hard to write portable
Ada code that uses math functions.

Representation specification i1s not
portable because each Ada compiler
and/or hardware platform may use a
different memory boundary.

Variant record is the only Ada data type
that can be used to implement (s union,
but it is not as efficient nor [lexible.

Some Ada compilers do not allow calling
an Ada program from another language
because Ada is a runtime environiment as
well as a programming language. When it
Is supported, many restrictions are usually
imposed: the main program must be an
Ada program, and exceptions and tasking
may not be used by the Ada program
called from another language.

In C, conditional compilation facilitated
by preprocessor directives (e.g #define and
#if) allows maintaining a single source file
for multiple platforms. In Ada. no such
facility exists, and multiple files may have
to be maintained for multiple platforms.

An Ada library system may lead to wasted
disk space. For example, an Ada library
management. syslem requires duplication
of the whole library when the body of a
package in the library has dual definitions,
In C, when functions are defined more
than once, they can be simply stored in
multiple local fibraries while the rest of
the program is stored i a mam library
without duplication. Only one of these
mulitiple local libraries 15 hnked with the

main library.

o A C-style Tormatuing function {e.g. printf,
sprintf, ete} is hard, il not impossible, to
implement i Ada because the data tvpes
ol 1ts Tunction arguments are not pre-
determined.

Vartous Ada language issues are being studied by
several working groups including the Ada Language
fssues Working CGroup (ALIWG) and the Ada
Runtime Environment Working Group (ARTEWG).
and will be proposed for the Ada 9X standard [1], {2].

We believe that some of the issues discussed in this
paper should also be considered for the Ada 9\,

3.3. Related Work

FLAC (Ford Lisp-Ada Connection) uses a Lisp
environment to develop an expert system application
and generates Ada code {o be deployed in Ada
environments [13]. Its knowledge base is specified
using a graphical representation similar to that of
VLSI design (e.g. OR gates and AND gates). FLAC is
simlar to ART. Ada because its development
environment 1s not implemented in Ada but Ada
deployment is supported. The difference is, however,
that FLAC’s development environment is based on
Lisp, while ART/Ada uses that of ART-IM which is
written in C. C and Ada development environments
coexist on the same hardware platforms more often
than Lisp and Ada development environments do.
FLAC. for example, uses a special-purpose Lisp
machine for the front-end. and a VAX for the Ada
deplovment. Both ART-IM and ART/Ada can run on
Another difference 1s that
FLAC's input 1s graphics-oriented while ART/Ada is
language-oriented. FLAC’s knowledge base is pre-
compiled and static. which means that objects may
not be added or deleted dynamically at runtime

the same hardware.

although their values may be changed. This impose

major restrictions on the reasoning capability which
do not exist in ART-IM and ART,/Ada.

CHRONOS is a commercial expert system tool
written in Ada that was introduced recently. It is
developed and marketed by a French company.
Euristic Systems. As its name implies, it supports
temporal reasoning capabilities by time-stamping each
fact with temporal attributes. Currently, little is

published about this tool

Another commercial ool s an object-oriented
programming covironment called Classic-Ada (18 It
seems to have its roots in Smalltalk. Flavors and
CLOS {Common Lisp Object System).” Although
Classic-Ada does not support rules. its object-oriented
progl‘;1113|ni|1g features are similar to ART-INs object

system.

It is reported that several logic-hased tools support
Prolog in Ada [4]. 3], 110]. Although Prolog can be
used to tmplement expert systems, its approach and
scope are significantly different from expert svstem
tools such as ART-IM. These tools, therefore. are not

covered in this paper.

3.4. Future Work

ART,Ada will be used by several NASA sites to
implement prototype expert systems for the Space
Station Freedom Program testbeds. This will allow
research to understand the potential uses and
operational issues of ART/Ada.

Our future research effort will be focused on real-
time embedded and distributed applications:

e to meet real-time requirements,

e to support distributed environments (e.g.
parallel processors}. and

s to [it into embedded processors.

Real-time requirements are still not very well
understood [19]. Support for real-time applications in
an expert S)'stém tool is usually focused on temporal
reasoning capability or on bhetter performance [14}.
No tool presently available seems to address
guaranteed responsc time. While it is not clear how
an expert svstem tool can satisly hard real-time
requirements by guaranteeing response tume. its
performance could be optimized to satisfy soft real-
time requirements [15]. Although it is possible to
implement temporal reasoning in ART Ada using
existing features, it would be straightforward to build

. S
When rules are not usesl, ART-IM can he viewedl as an obgeet-
oriented programming environment.

N

I

a4

{ { 0

i

temporal reasoning capabihity divectly into ART “Ada.

One way to support parallelism in a2 Rete-based
expert svatem tool s to parallelize the Rete
network '8, This approach may require specialized
hardware. Another approach is a message-passing
architecture that allows multiple expert systems lo
communicate asvichronously. This approach can be
implemented by developing multiple ART/ Ada
programs and a communications package outside of
ART Ada
should be provided to support multiple cooperating
expert systems that can run as multiple processes on a

Ideally. though, a bwlt-in capability

single processor or as distributed processes on multiple
processors. If multiple "knowledge-base packages”
are supported I a single program. each package can
be deployed as an expert system module that would
communicate asynchronously with other modules
through a message passing mechanism that may have
to be customized for each software hardware
platform. Ada tasking would be ideal [for
implementing this hecause it is portable and does not
require customization.

Although semiconductor technology is improving
very rapidly in the commercial sector, embedded
processors are still based on the old technology.
Modern operating system features such as virtual
memory are not readily available on most on-board
computers. The resource requirements on these
computers such as processor speed and real memory
are quite stringent. [t is essential that ART/Ada
meet. these requirements for the emerging new-
generation embedded processors such as the Intel
30386. the Intel 80960, and the MIPS RISC chip.

4. Acknowledgments

The authors wish to acknowledge the gumidance and
support of Chris Culbert. Bob Savely and Bob Brown
of NASA Johnson Space Center Mission Planning and
Division, Greg Swietek of NASA
Headquarters Space Station Office, and Captain Mark
Gersh of USAF Technology and Requirements
Planning. Mark Auburn. Don Pilipovich and Mark
Wright ol Inference Corporation contributed to the

Analysis

project.

References

1. Ada Language Issues Working Group. " Ada
Language Issues Working Group (ALIWG) NMinutes of
17 August 1938%. Ada Letter~ (N1

(January February 1929).

2. Ada Runume Environment Working Group.
*Activities of the Ada Runtime Environment
Working Group". Ada Letters [N 5 (July August
1939).

3. Bobbie, P.O. ADA-PROLOG: An Ada System for
Parallel Interpretation of Prolog Programs.
Proceedings of the third Annual Conference on
Artificial Intelligence and Ada. 1987.

4. Burback, R. PROVER: A First-order Logic
System in Ada. Proceedings of the third Annual
Conlerence on Artificial Intelligence and Ada. 1987,

5. Dzierzanowski, J. M. et. al. The Authorizer’s
Assistant: A Knowledge-based Credit Authorization
System for American Express. Proceedings of the
Conference on Innovative Applications of Artificial
Intelligence, AAAI 1989,

6. Forgy, C.L. "RETE: A Fast Algorithm for the
Many Pattern / Many Object Pattern Match
Problem™. Artificial Intelligence 19 (1982).

7. Ganapathi, M., Mendal, G.O. "lIssues in Ada
Compiler Technology”. Compuier 22, 2 (February
1989).

8. Gupta, A. Farallelism in Produclion Systems.
Pitman Publishing, 1988.

8. Hugh, D.A. "The Future of Flying". Al Expert
3, 1 (January 1988).

10. Ice, S, et. al. Raising ALLAN: Ada Logic-Based
Language. Proceedings of the third Annual
Conference on Artificial Intelligence and Ada. 1987

11. Inference Corporation. ART Version 3.2
FRe ference Manual. Inference Corporation. 19838

12. Inference Corporation. ART-IA 1.5 Re ference
Manual. Inference Corporation, 1989.

13. Jaworski, A., LaVallee, D, Zoch, D. A Lisp-Ada
Connection for Expert System Development.
Proceedings of the third Annual Conference on
Artificial Intelligence and Ada. 1987,

14. Laltey. T J.. Cox. P AL Sehmidt. J L. Kao.
SAL, Read, LY. "Real-Time Knowledge-Based
Svystems"_ Al Magazine 9,1 (Spring 1938},

15. Laffev, T, S Weitzenkamp, Read, J.. Kao. S..

Schanidr, I Tntetligent Real-Time Monitoring. -

Proceedings of the National Conference on Artificial ;

Intelligence, AAAL 10383,

18. Naka~hima, Y. Baba, T. OHCS. Hydrauhie =

Circuit Design Assistant. Proceedings of the -

Conference on Innovative Applications of Artificial

Intelligence. AAAL 1979, -

17. O'Brien. J. et. al. The Ford Motor Company -

Direct Labor Management System. Proceedings of the

Conlerence on Innovative Applications of Artificial =

Intelligence, AAAL 1939, -

18. Software Productivity Solutions. Inc. e

Classic-Ada User Manual. Software Productivity =

Solutions, Tnc, 1988, o

19. Stankovic. J. A. "Misconceptions about Real- =

Time Computing®. Computer 21, 10 (October 1988). B
%

o

